22 research outputs found

    Loss compensation in microring-based Si photonics devices via Er3+doped claddings

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOWe propose and demonstrate a method to compensate insertion losses in Si photonics devices based on ring resonators fabricated in SOI foundries, with no additional chip area used. It consists in the employment of Er:Al2O3 as the upper cladding layer on standard Si/SiO2 rings, requiring only one simple post-processing step. The method is modeled in detail, and simulation results for single-ring configurations and photonic molecules are discussed, where the potential for loss reduction is predicted for different design choices based on the quality factor. We experimentally verify the viability of the method, obtaining an output power increase of 1 dB when a single-ring resonator is pumped. This value is increased when the method is applied to devices based on photonic molecules, where a value of 2.6 dB has been measured. This is equivalent to a loss reduction potential higher than 3 dB for a photonic molecule designed to achieve a quality factor of 50000.104113FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO08/57857-22014/04748-2574017/2008-

    Characterization of surface-states in a hollow core photonic crystal fiber

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOSurface or edge states represent an important class of modes in various photonic crystal systems such as in dielectric topological insulators and in photonic crystal fibers. In the later, strong attenuation peaks in the transmission spectrum are attributed to coupling between surface and core-guided modes. Here, we explore a modified implementation of the spatial and spectral interference method to experimentally characterize surface modes in photonic crystal fibers. Using an external reference and a non-uniform Fourier transform windowing, the obtained spectrogram allows clear observation of anti-crossing behavior at wavelengths in which surface and core modes are strongly coupled. We also detect surface modes with different spatial symmetries, and give insight into mode families couple to the fundamental or high-order core modes, as well as the existence of uncoupled surface modes.26253255432564FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2013/20180-32015/04113-008/57857-2Sem informação574017/2008-

    Effects of Ga+ milling on InGaAsP Quantum Well Laser with mirrors etched by Focused Ion Beam

    Full text link
    InGaAsP/InP quantum wells (QW) ridge waveguide lasers were fabricated for the evaluation of Ga+ Focused Ion Beam (FIB) milling of mirrors. Electrical and optical proprieties were investigated. A 7% increment in threshold current, a 17% reduction in external quantum efficiency and 15 nm blue shift in the emission spectrum were observed after milling as compared to the as cleaved facet result. Annealing in inert atmosphere partially revert these effects resulting in 4% increment in threshold current, 11% reduction in external efficiency and 13 nm blue shift with the as cleaved result. The current-voltage behavior after milling and annealing shows a very small increase in leakage current indicating that optical damage is the main effect of the milling process.Comment: 12 pages, 4 figure

    Brillouin scattering self-cancellation

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORThe interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it.The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it.718FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR08/57857-2, 2012/17610-3, 2012/17765-7, 2013/20180-3574017/2008-9Sem informaçã

    Single-electron tunneling PbS/InP neuromorphic computing building blocks

    Get PDF
    We study single-electron tunneling (SET) characteristics in crystalline PbS/InP junctions, that exhibit single-electron Coulomb-blockade staircases along with memory and memory-fading behaviors. This gives rise to both short-term and long-term plasticities as well as a convenient non-linear response, making this structure attractive for neuromorphic computing applications. For further insights into this prospect, we predict typical behaviors relevant to the field, obtained by an extrapolation of experimental data in the SET framework. The estimated minimum energy required for a synaptic operation is in the order of 1 fJ, while the maximum frequency of operation can reach the MHz range

    Virtual Queues for P4: A Poor Man’s Programmable Traffic Manager

    No full text
    The advent of programmable network switch ASICs and recent developments on other programmable data planes (NPUs, FPGAs) drive the renewed interest in network data plane programmability. The P4 language has emerged as a strong candidate to describe a protocol independent datapath pipeline. With its supported architectures, the P4 language provides an excellent way to define the packet processing and forwarding behavior, while leaving other networking components such as the traffic management engine, to non-programmable fixed function elements, based on the capabilities of most programmable devices. However, network flexibility is essential to meet the Quality of Service (QoS) requirements of traffic flows. Thus, enabling programmable control for fixed-function elements like traffic management is crucial. Towards that end we propose the use of virtual queues in the P4 pipeline, investigate the application of virtual queue-based traffic management, and portability of the approach using different P4 programmable targets. Specifically, we focus on virtual queue based Active Queue Management (AQM) for congestion policing and meeting the latency targets of distinct network slices. The solution is compared to P4 built-in functionality for bandwidth management using meters, proving also that the additional dimensions of control are achieved without compromising the processing complexity of the solution

    SDN-enabled energy-efficient network management

    No full text
    The continuing increase in demand for online and cloud services as well as the development of new more resource-intensive applications poses a significant challenge to the network infrastructure. The resulting rise in energy costs and ecological considerations have made it apparent that a future network infrastructure needs to be as energy efficient as possible, while at the same time flexible enough to handle the ever-changing traffic demands it is exposed to. This requires a flexible adaption of resources in the network devices themselves \u2013 the power management primitives \u2013 as well as a network-wide optimization of traffic loads. Software defined networking provides a way to introduce this flexibility into the network. This chapter illustrates how both approaches can be integrated to form an energy-efficient network management system

    A-siox<er> Active Photonic Crystal Resonator Membrane Fabricated By Focused Ga+ Ion Beam.

    No full text
    We have fabricated thin erbium-doped amorphous silicon sub-oxide (a-SiOx) photonic crystal membrane using focused gallium ion beam (FIB). The photonic crystal is composed of a hexagonal lattice with a H1 defect supporting two quasi-doubly degenerate second order dipole states. 2-D simulation was used for the design of the structure and full 3-D FDTD (Finite-Difference Time-Domain) numerical simulations were performed for a complete analysis of the structure. The simulation predicted a quality factor for the structure of Q = 350 with a spontaneous emission enhancement of 7. Micro photoluminescence measurements showed an integrated emission intensity enhancement of ~2 times with a Q = 130. We show that the discrepancy between simulation and measurement is due to the conical shape of the photonic crystal holes and the optical losses induced by FIB milling.2018772-8
    corecore